23 research outputs found

    Rapid annotation of seizures and interictal-ictal-injury continuum EEG patterns

    Get PDF
    Background: Manual annotation of seizures and interictal-ictal-injury continuum (IIIC) patterns in continuous EEG (cEEG) recorded from critically ill patients is a time-intensive process for clinicians and researchers. In this study, we evaluated the accuracy and efficiency of an automated clustering method to accelerate expert annotation of cEEG. New method: We learned a local dictionary from 97 ICU patients by applying k-medoids clustering to 592 features in the time and frequency domains. We utilized changepoint detection (CPD) to segment the cEEG recordings. We then computed a bag-of-words (BoW) representation for each segment. We further clustered the segments by affinity propagation. EEG experts scored the resulting clusters for each patient by labeling only the cluster medoids. We trained a random forest classifier to assess validity of the clusters. Results: Mean pairwise agreement of 62.6% using this automated method was not significantly different from interrater agreements using manual labeling (63.8%), demonstrating the validity of the method. We also found that it takes experts using our method 5.31 +/- 4.44 min to label the 30.19 +/- 3.84 h of cEEG data, more than 45 times faster than unaided manual review, demonstrating efficiency. Comparison with existing methods: Previous studies of EEG data labeling have generally yielded similar human expert interrater agreements, and lower agreements with automated methods. Conclusions: Our results suggest that long EEG recordings can be rapidly annotated by experts many times faster than unaided manual review through the use of an advanced clustering method

    Effective early detection of epileptic seizures through EEG signals using classification algorithms based on t-distributed stochastic neighbor embedding and K-means

    Get PDF
    Epilepsy is a neurological disorder in the activity of brain cells that leads to seizures. An electroencephalogram (EEG) can detect seizures as it contains physiological information of the neural activity of the brain. However, visual examination of EEG by experts is time consuming, and their diagnoses may even contradict each other. Thus, an automated computer-aided diagnosis for EEG diagnostics is necessary. Therefore, this paper proposes an effective approach for the early detection of epilepsy. The proposed approach involves the extraction of important features and classification. First, signal components are decomposed to extract the features via the discrete wavelet transform (DWT) method. Principal component analysis (PCA) and the t-distributed stochastic neighbor embedding (t-SNE) algorithm were applied to reduce the dimensions and focus on the most important features. Subsequently, K-means clustering + PCA and K-means clustering + t-SNE were used to divide the dataset into subgroups to reduce the dimensions and focus on the most important representative features of epilepsy. The features extracted from these steps were fed to extreme gradient boosting, K-nearest neighbors (K-NN), decision tree (DT), random forest (RF) and multilayer perceptron (MLP) classifiers. The experimental results demonstrated that the proposed approach provides superior results to those of existing studies. During the testing phase, the RF classifier with DWT and PCA achieved an accuracy of 97.96%, precision of 99.1%, recall of 94.41% and F1 score of 97.41%. Moreover, the RF classifier with DWT and t-SNE attained an accuracy of 98.09%, precision of 99.1%, recall of 93.9% and F1 score of 96.21%. In comparison, the MLP classifier with PCA + K-means reached an accuracy of 98.98%, precision of 99.16%, recall of 95.69% and F1 score of 97.4%

    Automatic and early detection of Parkinson’s Disease by analyzing acoustic signals using classification algorithms based on recursive feature elimination method

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative condition generated by the dysfunction of brain cells and their 60–80% inability to produce dopamine, an organic chemical responsible for controlling a person’s movement. This condition causes PD symptoms to appear. Diagnosis involves many physical and psychological tests and specialist examinations of the patient’s nervous system, which causes several issues. The methodology method of early diagnosis of PD is based on analysing voice disorders. This method extracts a set of features from a recording of the person’s voice. Then machine-learning (ML) methods are used to analyse and diagnose the recorded voice to distinguish Parkinson’s cases from healthy ones. This paper proposes novel techniques to optimize the techniques for early diagnosis of PD by evaluating selected features and hyperparameter tuning of ML algorithms for diagnosing PD based on voice disorders. The dataset was balanced by the synthetic minority oversampling technique (SMOTE) and features were arranged according to their contribution to the target characteristic by the recursive feature elimination (RFE) algorithm. We applied two algorithms, t-distributed stochastic neighbour embedding (t-SNE) and principal component analysis (PCA), to reduce the dimensions of the dataset. Both t-SNE and PCA finally fed the resulting features into the classifiers support-vector machine (SVM), K-nearest neighbours (KNN), decision tree (DT), random forest (RF), and multilayer perception (MLP). Experimental results proved that the proposed techniques were superior to existing studies in which RF with the t-SNE algorithm yielded an accuracy of 97%, precision of 96.50%, recall of 94%, and F1-score of 95%. In addition, MLP with the PCA algorithm yielded an accuracy of 98%, precision of 97.66%, recall of 96%, and F1-score of 96.66%

    Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning.

    Get PDF
    Cancer is considered one of the most aggressive and destructive diseases that shortens the average lives of patients. Misdiagnosed brain tumours lead to false medical intervention, which reduces patients' chance of survival. Accurate early medical diagnoses of brain tumour are an essential point for starting treatment plans that improve the survival of patients with brain tumours. Computer-aided diagnostic systems have provided consecutive successes for helping medical doctors make accurate diagnoses and have conducted positive strides in the field of deep and machine learning. Deep convolutional layers extract strong distinguishing features from the regions of interest compared with those extracted using traditional methods. In this study, different experiments are performed for brain tumour diagnosis by combining deep learning and traditional machine learning techniques. AlexNet and ResNet-18 are used with the support vector machine (SVM) algorithm for brain tumour classification and diagnosis. Brain tumour magnetic resonance imaging (MRI) images are enhanced using the average filter technique. Then, deep learning techniques are applied to extract robust and important deep features via deep convolutional layers. The process of combining deep and machine learning techniques starts, where features are extracted using deep learning techniques, namely, AlexNet and ResNet-18. These features are then classified using SoftMax and SVM. The MRI dataset contains 3,060 images divided into four classes, which are three tumours and one normal. All systems have achieved superior results. Specifically, the AlexNet+SVM hybrid technique exhibits the best performance, with 95.10% accuracy, 95.25% sensitivity, and 98.50% specificity

    Multi-Method Diagnosis of CT Images for Rapid Detection of Intracranial Hemorrhages Based on Deep and Hybrid Learning

    Get PDF
    Intracranial hemorrhaging is considered a type of disease that affects the brain and is very dangerous, with high-mortality cases if there is no rapid diagnosis and prompt treatment. CT images are one of the most important methods of diagnosing intracranial hemorrhages. CT images contain huge amounts of information, requiring a lot of experience and taking a long time for proper analysis and diagnosis. Thus, artificial intelligence techniques provide an automatic mechanism for evaluating CT images to make a diagnosis with high accuracy and help radiologists make their diagnostic decisions. In this study, CT images for rapid detection of intracranial hemorrhages are diagnosed by three proposed systems with various methodologies and materials, where each system contains more than one network. The first system is proposed by three pretrained deep learning models, which are GoogLeNet, ResNet-50 and AlexNet. The second proposed system using a hybrid technology consists of two parts: the first part is the GoogLeNet, ResNet-50 and AlexNet models for extracting feature maps, while the second part is the SVM algorithm for classifying feature maps. The third proposed system uses artificial neural networks (ANNs) based on the features of the GoogLeNet, ResNet-50 and AlexNet models, whose dimensions are reduced by a principal component analysis (PCA) algorithm, and then the low-dimensional features are combined with the features of the GLCM and LBP algorithms. All the proposed systems achieved promising results in the diagnosis of CT images for the rapid detection of intracranial hemorrhages. The ANN network based on fusion of the deep feature of AlexNet with the features of GLCM and LBP reached an accuracy of 99.3%, precision of 99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84

    Systematic review of electronic health records to manage chronic conditions among displaced populations.

    Get PDF
    OBJECTIVES: The objective of this study was to assess the impact of electronic health records (EHRs) on health outcomes and care of displaced people with chronic health conditions and determine barriers and facilitators to EHR implementation in displaced populations. DESIGN: A systematic review protocol was developed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Systematic Reviews. DATA SOURCES: MEDLINE, Embase, PsycINFO, CINAHL, Health Technology Assessment, Epub Ahead of Print, In-Process and Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews was searched from inception to 12 April 2021. ELIGIBILITY CRITERIA FOR SELECTED STUDIES: Inclusion criteria were original research articles, case reports and descriptions of EHR implementation in populations of displaced people, refugees or asylum seekers with related chronic diseases. Grey literature, reviews and research articles unrelated to chronic diseases or the care of refugees or asylum populations were excluded. Studies were assessed for risk of bias using a modified Cochrane, Newcastle-Ottawa and Joanna Briggs Institute tools. DATA EXTRACTION AND SYNTHESIS: Two reviewers independently extracted data from each study using Covidence. Due to heterogeneity across study design and specific outcomes, a meta-analysis was not possible. An inductive thematic analysis was conducted using NVivo V.12 (QSR International, Melbourne, Australia). An inductive analysis was used in order to uncover patterns and themes in the experiences, general outcomes and perceptions of EHR implementation. RESULTS: A total of 32 studies across nine countries were included: 14 in refugee camps/settlements and 18 in asylum countries. Our analysis suggested that EHRs improve health outcomes for chronic diseases by increasing provider adherence to guidelines or treatment algorithms, monitoring of disease indicators, patient counselling and patient adherence. In asylum countries, EHRs resource allocation to direct clinical care and public health services, as well as screening efforts. EHR implementation was facilitated by their adaptability and ability to integrate into management systems. However, barriers to EHR development, deployment and data analysis were identified in refugee settings. CONCLUSION: Our results suggest that well-designed and integrated EHRs can be a powerful tool to improve healthcare systems and chronic disease outcomes in refugee settings. However, attention should be paid to the common barriers and facilitating actions that we have identified such as utilising a user-centred design. By implementing adaptable EHR solutions, health systems can be strengthened, providers better supported and the health of refugees improved

    Accurate detection of spontaneous seizures using a generalized linear model with external validation

    Get PDF
    Objective Seizure detection is a major facet of electroencephalography (EEG) analysis in neurocritical care, epilepsy diagnosis and management, and the instantiation of novel therapies such as closed-loop stimulation or optogenetic control of seizures. It is also of increased importance in high-throughput, robust, and reproducible pre-clinical research. However, seizure detectors are not widely relied upon in either clinical or research settings due to limited validation. In this study, we create a high-performance seizure-detection approach, validated in multiple data sets, with the intention that such a system could be available to users for multiple purposes. Methods We introduce a generalized linear model trained on 141 EEG signal features for classification of seizures in continuous EEG for two data sets. In the first (Focal Epilepsy) data set consisting of 16 rats with focal epilepsy, we collected 1012 spontaneous seizures over 3 months of 24/7 recording. We trained a generalized linear model on the 141 features representing 20 feature classes, including univariate and multivariate, linear and nonlinear, time, and frequency domains. We tested performance on multiple hold-out test data sets. We then used the trained model in a second (Multifocal Epilepsy) data set consisting of 96 rats with 2883 spontaneous multifocal seizures. Results From the Focal Epilepsy data set, we built a pooled classifier with an Area Under the Receiver Operating Characteristic (AUROC) of 0.995 and leave-one-out classifiers with an AUROC of 0.962. We validated our method within the independently constructed Multifocal Epilepsy data set, resulting in a pooled AUROC of 0.963. We separately validated a model trained exclusively on the Focal Epilepsy data set and tested on the held-out Multifocal Epilepsy data set with an AUROC of 0.890. Latency to detection was under 5 seconds for over 80% of seizures and under 12 seconds for over 99% of seizures. Significance This method achieves the highest performance published for seizure detection on multiple independent data sets. This method of seizure detection can be applied to automated EEG analysis pipelines as well as closed loop interventional approaches, and can be especially useful in the setting of research using animals in which there is an increased need for standardization and high-throughput analysis of large number of seizures

    Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques

    No full text
    Leukemia is one of the most dangerous types of malignancies affecting the bone marrow or blood in all age groups, both in children and adults. The most dangerous and deadly type of leukemia is acute lymphoblastic leukemia (ALL). It is diagnosed by hematologists and experts in blood and bone marrow samples using a high-quality microscope with a magnifying lens. Manual diagnosis, however, is considered slow and is limited by the differing opinions of experts and other factors. Thus, this work aimed to develop diagnostic systems for two Acute Lymphoblastic Leukemia Image Databases (ALL_IDB1 and ALL_IDB2) for the early detection of leukemia. All images were optimized before being introduced to the systems by two overlapping filters: the average and Laplacian filters. This study consists of three proposed systems as follows: the first consists of the artificial neural network (ANN), feed forward neural network (FFNN), and support vector machine (SVM), all of which are based on hybrid features extracted using Local Binary Pattern (LBP), Gray Level Co-occurrence Matrix (GLCM) and Fuzzy Color Histogram (FCH) methods. Both ANN and FFNN reached an accuracy of 100%, while SVM reached an accuracy of 98.11%. The second proposed system consists of the convolutional neural network (CNN) models: AlexNet, GoogleNet, and ResNet-18, based on the transfer learning method, in which deep feature maps were extracted and classified with high accuracy. All the models obtained promising results for the early detection of leukemia in both datasets, with an accuracy of 100% for the AlexNet, GoogleNet, and ResNet-18 models. The third proposed system consists of hybrid CNN–SVM technologies, consisting of two blocks: CNN models for extracting feature maps and the SVM algorithm for classifying feature maps. All the hybrid systems achieved promising results, with AlexNet + SVM achieving 100% accuracy, Goog-LeNet + SVM achieving 98.1% accuracy, and ResNet-18 + SVM achieving 100% accuracy

    Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases

    No full text
    With the increasing incidence of severe skin diseases, such as skin cancer, endoscopic medical imaging has become urgent for revealing the internal and hidden tissues under the skin. Diagnostic information to help doctors make an accurate diagnosis is provided by endoscopy devices. Nonetheless, most skin diseases have similar features, which make it challenging for dermatologists to diagnose patients accurately. Therefore, machine and deep learning techniques can have a critical role in diagnosing dermatoscopy images and in the accurate early detection of skin diseases. In this study, systems for the early detection of skin lesions were developed. The performance of the machine learning and deep learning was evaluated on two datasets (e.g., the International Skin Imaging Collaboration (ISIC 2018) and Pedro Hispano (PH2)). First, the proposed system was based on hybrid features that were extracted by three algorithms: local binary pattern (LBP), gray level co-occurrence matrix (GLCM), and wavelet transform (DWT). Such features were then integrated into a feature vector and classified using artificial neural network (ANN) and feedforward neural network (FFNN) classifiers. The FFNN and ANN classifiers achieved superior results compared to the other methods. Accuracy rates of 95.24% for diagnosing the ISIC 2018 dataset and 97.91% for diagnosing the PH2 dataset were achieved using the FFNN algorithm. Second, convolutional neural networks (CNNs) (e.g., ResNet-50 and AlexNet models) were applied to diagnose skin diseases using the transfer learning method. It was found that the ResNet-50 model fared better than AlexNet. Accuracy rates of 90% for diagnosing the ISIC 2018 dataset and 95.8% for the PH2 dataset were reached using the ResNet-50 model

    Deep and Hybrid Learning Technique for Early Detection of Tuberculosis Based on X-ray Images Using Feature Fusion

    No full text
    Tuberculosis (TB) is a fatal disease in developing countries, with the infection spreading through direct contact or the air. Despite its seriousness, the early detection of tuberculosis by means of reliable techniques can save the patients’ lives. A chest X-ray is a recommended screening technique for locating pulmonary abnormalities. However, analyzing the X-ray images to detect abnormalities requires highly experienced radiologists. Therefore, artificial intelligence techniques come into play to help radiologists to perform an accurate diagnosis at the early stages of TB disease. Hence, this study focuses on applying two AI techniques, CNN and ANN. Furthermore, this study proposes two different approaches with two systems each to diagnose tuberculosis from two datasets. The first approach hybridizes two CNN models, which are Res-Net-50 and GoogLeNet techniques. Prior to the classification stage, the approach applies the principal component analysis (PCA) algorithm to reduce the features’ dimensionality, aiming to extract the deep features. Then, the SVM algorithm is used for classifying features with high accuracy. This hybrid approach achieved superior results in diagnosing tuberculosis based on X-ray images from both datasets. In contrast, the second approach applies artificial neural networks (ANN) based on the fused features extracted by ResNet-50 and GoogleNet models and combines them with the features extracted by the gray level co-occurrence matrix (GLCM), discrete wavelet transform (DWT) and local binary pattern (LBP) algorithms. ANN achieved superior results for the two tuberculosis datasets. When using the first dataset, the ANN, with ResNet-50, GLCM, DWT and LBP features, achieved an accuracy of 99.2%, a sensitivity of 99.23%, a specificity of 99.41%, and an AUC of 99.78%. Meanwhile, with the second dataset, ANN, with the features of ResNet-50, GLCM, DWT and LBP, reached an accuracy of 99.8%, a sensitivity of 99.54%, a specificity of 99.68%, and an AUC of 99.82%. Thus, the proposed methods help doctors and radiologists to diagnose tuberculosis early and increase chances of survival
    corecore